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Abstract 
Gloss uniformity is an important attribute affecting overall 
quality for reflective images. Hence, the existence of dif
ferential gloss will impair perceived image quality [1,2]. 
As a result, it is desirable to measure the amount of dif
ferential gloss existing on a printed image. There are two 
approaches to quantify the differential gloss: direct instru
ment measurement and indirect estimation based on a pri
ori model [2]. In this proposal, we will adopt a support 
vector regression technique based on 1-norm penalty func
tion to identify (density/gloss) patches that are important 
under various printing processes and paper types. As a re
sult, these patches can be printed and measured such that a 
mapping function f can be established, which, in turns, is 
used to quantify the differential gloss in a printed image. 

1. Introduction 

In human visual perception, color, texture, shape and gloss 
are among important appearance attributes. Color and stereo 
vision are especially emphasized within the image process
ing and human vision research in the last several decades. 
However, gloss appearance and measurement are compar
atively less developed and understood [3,4]. Color and 
gloss are appearance attributes perceived by human beings 
when light is cast on an object. Color information is per
ceived in the spectrum (frequency) domain, and the geo
metric properties of the object contribute to the perceived 
gloss. Let L(λ) be the perceived spectrum. It is reasonable 
to assume that L(λ) contains all of the color information 
perceived by human beings. Moreover, it was shown to be 
sufficient to compress L(λ) with infinite dimensions into 
three dimensions [3]. Nonetheless, it is less straightfor
ward to measure gloss. The physical properties describ
ing interaction between incident light and the surface of an 
object is the Bidirectional Ref lectance Distribution Func
tion, BRDF, ρbd(θi, φi, θr , φr ), where angles of the inci
dent and reflected light are denoted as (θi, φi) and (θr , φr ) 
respectively [5]. Researchers have shown that simple alge
braic equations are not adequate to explain the perceived 
characteristics of gloss on painted specimen [4]. Hence, 
this also means that it is still unclear how to reduce the 

number of measurement pertaining human beings’ gloss 
perception like measuring color. R. Hunter identified six 
types of gloss recognizable by people, and they are: spec
ular gloss, sheen, contrast gloss, absence-of-bloom gloss, 
distinctness-of-image gloss (DOI) and surface uniformity 
gloss [3]. 

Our objective is to identify patches with different CMYK 
compositions such that an accurate regression function cor
relating between toner density and visual gloss can be ob
tained. However, it is obvious that only parts of the listed 
gloss attributes are observed. For example, DOI rarely 
exists on a print. Secondly, we assume that surface uni
formity gloss is insignificant in our assessment. Based 
on the experiment done by Hunter [3], 60-degree specu
lar gloss measurement ranging from 15 to 80 correlates 
well with human beings observation. Note that the linear 
visual response range of 60-degree and 75-degree gloss 
measurement overlaps significantly, people also use 75
degree gloss reading to correlate with human visual re
sponse. Since the 60-degree gloss reading from most of 
our print samples also reside within this range, we adopt 
the 60-degree specular gloss measurement as one of the 
important visual gloss factors. The experiment done by F. 
Billmeyer and F. O’Donnell concluded that observers can 
only concentrate on one gloss attribute because the MDS 
analysis showed that there exists only one significant fac
tor [4]. Assuming that specular gloss is the most notice
able gloss attribute, we adopt the 60-degree specular gloss 
measurement as the controlling parameter. 

Two types of functions are used in a regression tech
nique: global functions and local functions. The trigono
metric and polynomial functions belong to the global func
tions where modification at a local region will influence 
the approximation globally. On the other hand, modify
ing a local function will not affect the approximation else
where. For example, the Fourier transform and Wavelet 
transform adopts global and local functions respectively 
[6]. In our application, the underlying physical behavior 
relating the amount of toner laydown and the measured 
gloss is still unclear. Hence, it is more appropriate to ap
proximate the mapping function f(pc, pm, py , pk ) ≈ g60 
locally. As a result, there is a tradeoff between the number 
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of sample points and the approximation accuracy. Con
ceptually, we can imagine that dense sampling is needed 
where the curvature of the mapping function is significant. 
This is analogous to image compression where it was shown 
by Mallat that satisfactory reconstruction can be achieved 
by using only the local maximum of wavelet coefficients 
[6]. However, our problem is complicated by the amount 
of different printing processes and paper substrates. As
suming S represents the set containing all possible map
ping functions, our proposed patch selection algorithm first 
adopts the singular value decomposition to approximate S 
by S ̂ ≡ Span{v1, v2, · · ·  , vk }, where vk represents the 
k-th singular vector. Then, a support vector regression 
technique is used to identify important patches to describe 
ˆ S. Our experiment demonstrates that the set of selected 
patches successfully predict the measured gloss under dif
ferent printing processes and paper substrates. 

2. Support Vector Regression 

The support vector machine is first developed in super
vised learning by V. Vapnik [7,8]. In the simplest case, 
we can assume that there exists two classes of data, and 
they can be separated via a hyperplane. Since this hyper
plane can be written as w′x + b, we can let y = 1, −1 
representing the class each data belongs, and the above hy
perplane separability can be shown to satisfy the following 
constraint [7]: 

yi(w ′ xi + b) ≥ 1. (1) 

There are usually more than one set of solutions [w′ b]T 

satisfying the above inequality. The objective of unsuper
vised learning is to minimize the training error as well as 
the generalization error. The following theorem provides 
the upper bound for the classification error [7]: 

Theorem Let H be a hyperspace having VC dimension 
d. For any probability distribution D on X×[-1 1], 
with probability 1−δ over l random examples S, any 
hypothesis h∈ H that makes k errors on the training 
set S has error no more than 

err(h) ≤ 
2 
l

k 
+

4 
l 
(d log 

2 
d

el 
+ log 

4 
(2)

δ 
) 

provided d ≤ l. 

This theorem can be further simplified to be equal to achiev
ing Maximal Margin Bound. Because only small portion of 
the existing data set can be separated via a hyperplane, the 
above derivation can be extended to a higher-order feature 
space via a kernel mapping function [7,8]. One advantage 
of this technique is that only a small subset of the original 
data is identified as support vectors, which are sufficient 
to construct the separating hypersurface. 

Researchers have extended the support vector machine 
formulation to data regression [9,10,11,12]. In this pa
per, we basically follow the formulation proposed by Man
gasarian and Musicant because of its simplicity [9]. Let the 
system matrix A ∈ Rl×d contain l data points in Rd , and 
yi, i = 1  · · ·  l, be a real number associated with each data 
point. A nonlinear kernel K(A,AT ) :  Rl×d × Rd×l −→ 
Rl×l is adopted. The support vector regression problem, 
SVR, can be formulated as following [9]: 

min 
1 
e ′(α1 + α2) +  

C
e ′t + C(1 − µ)ε (3) 

α1,α2,b,t,ε l l 

subject to 

K(A,AT )(α1 − α2) +  be − y ≤ t + eε (4) 

K(A,AT )(α1 − α2) +  be − y ≥ −t − eε (5) 

α1, α2, t  ≥ 0. (6) 

µ ∈ [0 1] is an accuracy control parameter [11]. Moreover, 
C specifies the penalty severity applied on the regression 
error. Large C imposes significant penalty, which, in turns, 
implies that we have higher confidence on the measured 
data. 

3. Patch Selection Algorithm 

The objective of this algorithm is to construct a set P ≡ 
{p1, p2, · · ·  pn}, where pi = [pc(i) pm(i) py (i) pk (i)]T 

is crucial for building a mapping function from the toner 
percentage to the measured 60-degree gloss value under 
certain conditions. A brute force approach is to find the 
union of sets P k for every possible condition. This ex
haustive search is not only time consuming, but, more im� 
portantly, the union set P� = P k might contain most of 

k 
the sampled patches even though we successfully reduce 
the number of selected patches for each P k . 

As noted previously, our patch selection problem is 
similar to data compression. Both goals are to reduce the 
number of points to satisfactorily approximate the original 
data. Hence, similar to data compression, we can assume 
that the characteristics of the mapping function f can be 
decomposed as following: 

g = {a priori model + residual} + noise (7) 

= f + n (8) 

where a priori model represents our prior knowledge about 
this system and the remaining information is denoted as 
residual. Assuming that a priori model is only controlled 
by a few parameters which can be easily obtained, more 
samples can be devoted to estimating the residual. This, 
in turns, might result in more accurate approximation with 
the same amount of samples. 
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3.1. Quadratic Mixture Model 

We need to take a closer look at the physical and psycho

logical characteristics with respect to the perceived gloss

on a print. Generally, the perceived gloss is composed of 0 % 

� � � � � � � 
age


wide spectrum, which means that those light does not go

through the color absorbing material, i.e., toners. There

fore, we can assume that light reflected from the outmost

surface contributes most of the perceived gloss. As a re

sult, the geometric properties and the reflectance coefficient

of that surface controls the perceived gloss. A rough sur- Low Percent 

� � � � � � 
age


face will scatter more light such that a gloss meter collects

less photons at the specified angle. In the mean time, the

reflectance coefficient of the surface material will deter

mine the proportion of the incident light being reflected.

Under the condition that the surface material is predeter

mined, the geometric properties of the outmost surface alone


� � � � � � �� � � affects the measured gloss value. 
There are various types of printing processes. For ex

ample, the lithography, the ink jet printing and the elec
trophotography, etc.. In this paper, we will concentrate on 
the electrophotography which uses toner particles to com
pose a print. Figure 1 is an simplified illustration of cross 
sections with various amount of toner coverage on paper 
substrate. Except for the uncoated paper, we can assume 
that the roughness on the surface of the paper is negli
gible. Hence, when toner particles begin to adhere on a 
paper surface, the profile of the surface becomes rougher. 
This results in the reduction of measured gloss for paper 
with medium and high gloss. However, when a significant 
amount of toner particles are laid down on the paper sur
face, gaps between tone particles begin to disappear, which 
results in smoother surface. This, in turns, increases gloss. 
Nonetheless, because the reflectance coefficient of toner 
particle is often greater than matte-coated paper, the re
sulted gloss is usually monotonically increasing with re
spect to the amount of toner. The measured gloss rela
tive to the amount of toner coverage is therefore at least 
a quadratic polynomial. Furthermore, we assume that the 
gloss is a weighted average of different toner as following: 

4 

gmodel = wigi (9) 
i=1 

where 

i 2 gi = a0 
i + a1 

i pi + a2pi (10) 
4 

wj = pj / pi. (11) 
i=1 

The unknown coefficients [ai 
1 a

i 
0 a

i 
2]

T can be obtained by 
a least square solution from each channel. 

High Percent age 

Figure 1: Simplified illustrations of cross sections with various 
amount of toner coverage 

3.2. Support Vector Identification 

Let G ∈ Rs×m represent the measured gloss, where there 
exists s patches for each print and m total prints are used 

ˆin the analysis. Assuming Gqm ∈ Rs×m specifies gloss 
values predicted by the previous quadratic mixture model, 
we then adopt the singular value decomposition, SVD, to 
G − ˆ Gqm such that 

Gr = G − ˆ Gqm = Ur Sr Vr
T . (12) 

The range space, R(Gr ), is spanned by the columns of 
Ur , and the diagonal elements of Sr are the square root 
of eigenvalues of Gr G

T 
r . It has been shown that SVD is 

the optimal linear projection operator for maximal signal 
energy concentration on a subspace. Hence, we can as

r r r ], where k � m, issume that the subspace, [u1 u2 · · ·  uk


sufficient to approximate the original signal, and the re

maining column vectors of Ur contain mainly noise. In

our experiment, we found that the first two column vectors

of Ur already contains the majority of the energy in Gr .

Hence, we propose to apply the SVR algorithm on u1 and
r 
u2 

r respectively. Let SV1 and SV2 represents the identified 
support vectors for u1 

r , and the selected patches, Sp,r and u2 

is the union of SV1 and SV2, i.e.: 


 
Sp = SVi. (13) 

i=1,2 
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Minimal distance between random samples and the selected patches 
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Figure 2: Histogram of the minimal distance between random 
samples and selected patches. Red line is derived from 8 color 
ramps; Blue line is derived by adding 26 near-neutral patches; 
Green line represents histogram based on the clustering result. 
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Figure 3: Summary of the original data and the residual after 
subtracting the quadratic mixture model prediction 

4. Experiment Results 

Four types of paper are selected in this experiment: Enso
4CC Silk, Sappi-Tech Lustro Laser, and Chromcoat 12Pt. 
Their paper 60-degree gloss readings before printing are 
6.8, 35 and 60 respectively. 

Before applying the proposed algorithm, we notice that 
the measured gloss, g, has to satisfy the following con
straint: 0 ≤ g ≤ 100. Hence, the Probit and inverse Probit 
transform are adopted as the first and the last operation 
such that the estimated gloss meets this constraint. Figure 
2 illustrates the histogram of the minimal distance between 
5000 random points to the selected patches. Three selec
tions are used: one contains 8 color ramps, C,M,Y,K,R,G,B 
and 3-Color Neutral, the second selection includes all noted 
color ramps and 28 randomly selected near-neutral patches, 
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Figure 4: Comparison between the original data, the residual 
and the error with 37 patches 

and the last set contains all noted color ramps as well as 
42 patches via progressively clustering neighboring sam
ple points into a new sample. It is obvious that 8 color 
ramps only, 56 patches in total, does not offer sufficient 
sampling because there exists regions with very few sam
ple points. This problem is drastically reduced via adding 
near-neutral patches. We further optimized the sampling 
grid by using a complete-link clustering algorithm, which 
is also shown in figure 2. 

We choose the radial basis function as the nonlinear 
kernel in the SVR algorithm, and it has the following form 
[7,8]: 

K(x, y) =  e −u‖x−y‖2 
(14) 

where u is a scaling factor. We found that u = 1.4 reaches 
a good compromise between offering global and local in
formation. 

Figure 3 provides the information of the original data 
and the residual Gr up to degree two. It clearly show 
that the mean of Gr after subtracting the prediction by 
the quadratic mixture model is approximately zero for the 
adopted printing processes and selected types of paper. More
over, the first singular value is significantly reduced com
paring between the original data and the residual. This 
means that the proposed quadratic mixture model is able to 
capture the overall trend of the measured gloss for various 
types of paper. Figure 4 and 5 illustrate estimation error 
for all patches based only on 37 and 56 selected patches re
spectively. It shows that the patches identified by the pro
posed algorithm further improve the estimation error with 
increasing number of patches. Nonetheless, the standard 
deviation of estimation error will not reach zero because 
of the measurement uncertainty and the estimation ability 
imposed by the chosen kernel function. 
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Figure 5: Comparison between the original data, the residual 
and the error with 56 patches 
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Figure 6: Generalization testing result by using 56 patches 

38 prints from three types paper, Enso-4CC Silk, Sappi-
Tech Lustro Laser and Chromcoat 12pt, are selected as the 
test set, and we only choose the identified patches to build 
a gloss regression model for each print. Figure 6 demon
strates that the regression model based on 56 patches is 
also able to generalize to unseen data. 

5. Conclusion 

By combining the assumed a priori quadratic mixture model 
with the SVR algorithm with 1-Norm, the proposed selec
tion algorithm is able to find important samples to build 
a accurate regression model for various printing processes 
and paper types. We plan to extend this study to other 
printing and fusing processes. 
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